Dido3-dependent HDAC6 targeting controls cilium size

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dido3-dependent HDAC6 targeting controls cilium size

Primary cilia are involved in a variety of physiological processes such as sensing of the environment, cell growth and development. Numerous developmental disorders and pathologies arise from defects in these organelles. Multiple proteins that promote formation and disassembly of the primary cilium have been identified, but little is known about the mechanisms that control steady-state cilium s...

متن کامل

Primary Cilium-Dependent Signaling Mechanisms

Primary cilia are hair-like organelles and play crucial roles in vertebrate development, organogenesis, health, and many genetic disorders. A primary cilium is a mechano-sensory organelle that responds to mechanical stimuli in the micro-environment. A cilium is also a chemosensor that senses chemical signals surrounding a cell. The overall function of a cilium is therefore to act as a communica...

متن کامل

Organelle Size: A Cilium Length Signal Regulates IFT Cargo Loading

Cilia grow by assembling structural precursors delivered to their tips by intraflagellar transport. New work on ciliary length control indicates that, during ciliary growth, cilia send a length signal to the cytoplasm that regulates cargo loading onto the constitutively trafficking intraflagellar transport machinery.

متن کامل

Dido3 PHD modulates cell differentiation and division.

Death Inducer Obliterator 3 (Dido3) is implicated in the maintenance of stem cell genomic stability and tumorigenesis. Here, we show that Dido3 regulates the expression of stemness genes in embryonic stem cells through its plant homeodomain (PHD) finger. Binding of Dido3 PHD to histone H3K4me3 is disrupted by threonine phosphorylation that triggers Dido3 translocation from chromatin to the mito...

متن کامل

SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana

Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenoty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2014

ISSN: 2041-1723

DOI: 10.1038/ncomms4500